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Abstract. Functional integrals over complex and real auxiliary fields for propagators relating 
to two-time (memory) actions are constructed. The integrals over fields result from partial 
replacement of the path variable, via functional integration, in the path integral form of 
the propagator by a field variable in a way that allows the remaining path integration to 
be performed, thus leaving a functional integral. Two new cases of actions involving 
memory, a quadratic and a quartic are treated explicitly. A functional integral identity is 
also developed. Furthermore, the method of coupling an auxiliary dynamical field for 
generating memory actions is also employed and formulae have been developed in the 
case of certain quadratic actions giving the propagator exactly. The method is flexible 
enough embracing all explicitly known cases of two-time quadratic actions and in addition 
enabling further cases to be treated. An example of this nature is given explicitly. 

1. Introduction 

The forces entering the equations of motion of a system derive from a potential provided 
the dynamics of all other systems interacting with it are coupled to the system’s 
dynamical equations. In such a situation we deal essentially with the dynamics of a 
closed system possessing potential independent of time, which at a given moment is 
fully determined by the instantaneous degrees of freedom of the whole system. 
However, on many occasions attention is focused on a subsystem of a closed system 
and in such a case the particular system’s potential function becomes time dependent 
or may also manifest a memory effect which gives rise to a two-time action. 

In the literature one finds circumstances in which memory in a particular system’s 
Lagrangian results from conditional elimination of the degrees of freedom of the 
systems that are coupled to the one in question. A frequently encountered case of this 
nature is in the polaron problem (Feynman 1955, Krivoglaz and Pekar 1957, Osaka 
1958, Hellwarth and Platzman 1962, Thornber and Feynman 1970, Thornber 1971). A 
more general situation of this sort appears in the theory of influence functionals 
(Feynman and Vernon 1963). 

The average propagator of a conduction electron moving in a system of disordered 
scatterers (amorphous material) leads under certain conditions to a two-time action 
(Edwards and Guliaev 1962, Edwards 1970a, b). Work involving this action 
was subsequently pursued by Jones and Lukes (1969), Samathiyakanit (1974), Gross 
(1977) and Sa Yakamit (1979). Furthermore, such action appears in studies of poly- 
merised matter, but the role of time now taken up by the polymer length (Edwards 
1965, 1966, Edwards and Miller 1975). 
t Now at Department of Physics (Laboratory of Mechanics), University of Athens, Panepistimiopolis Athens 
15771, Greece, from where he has been on leave of absence. 
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Because of the difficulty inherent in evaluating propagators deriving from such 
actions one is forced to resort to approximations involving at some stage a two-time 
quadratic action. In the case of such an action the propagator takes the form of a 
Gaussian path integral which equals a product of a time dependent factor and the 
exponential of ( i /h)  times the classical action. Unlike the case of the single-time 
quadratic action the time dependent factor cannot be determined by the classical action 
alone using the Van Vleck (1928) determinant as e.g. in Jones and Papadopoulos 
(1971). However, as pointed out by Adamowski et a1 (1982) if one deals with certain 
aspects of statistical mechanics, evaluation of the time dependent factor may not be 
needed. In general the full expression for the propagator is necessary and an increasing 
number of methods have been devised (Maheshwari 1975, Khandekar et al 1981, 
Dahra et a1 1982) for treating a simple two-time quadratic action used by Bezak (1970), 
following a solution employing an appropriate auxiliary field (Papadopoulos 1974). 

Recently more general quadratic actions have been treated by Adamowski et a1 
(1982) making use of functional integration and subsequently by Khandekar et a1 
(1983) employing path integration, the steps of which have been followed by Chen 
(1984) to carry out the evaluation with an additional harmonic oscillator potential, a 
case treated also by Castrigiano and Kokiantonis (1983). 

The present work places emphasis on auxiliary fields for handling two-time actions. 
In the literature there have been designed various forms of functional integrals over 
quite general fields including temporal as well as spatial dependence. The reader is 
referred to Edwards and Peierls (1954), Matthews and Salam (1959, Edwards (1965), 
Edwards and Sherrington (1967) and Sherrington (1971). For functional integrals over 
fields arising in polymers see Edwards and Freed (1970). For functional integrals in 
fluid mechanics see Rosen (1983). However, here we rely on fields with only temporal 
dependence and in this sense there is some resemblance to earlier works by the author 
(Papadopoulos 1968, 1974). 

In § 2 complex and real fields are introduced and certain general transformations 
converting path into functional integrals over these fields are obtained. Hereafter the 
term path integration will be used whenever the integration is over particle coordinates 
while the term functional integration will be employed in relation to other fields. 
Utilising a complex field we treat explicitly a particular, but rather general, form of a 
quadratic action. Finally, the propagator for a specific quartic action is reduced to an 
integral over a single variable. 

In § 3 we present a method which employs a dynamical auxiliary field enabling 
the handling of cases of quadratic actions. It is shown how the method reproduces 
the various explicitly known results, and furthermore how to generate explicitly certain 
new ones. By way of an example a further path integral is treated. 

In an appendix we work out a new, as far as we are aware of, functional integral 
identity. 

2. Real and complex fields 

We begin by considering the two-time action 

S[x( t ) ]  = loT dt $m2( t )  - i,' d t  loT ds W ( x (  t )  - x( s ) )  (2.1) 

where W may explicitly depend on t and s. The propagator, K,  associated with the 
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action (2.1) is given by the Feynman path integral 

K ( x T 1 x ’ O )  = s exp( ; s [ x ( t ) l )  9 ~ x 1 .  
x(O)=x’,x( T ) = x  

The path integral ( 2 . 2 )  can be written with the aid of a complex auxiliary field, A ( t ) ,  
as follows: 

m . T  

K ( x T l x f O ) = J  enp[i  Jo d t T x 2 ( t )  
x(O)=x’,x( T ) = x  

-JOT d t  l ~ ( t ) l ~ ] M [ X ]  O S f < i -  fl (“) 7T d’A(t) (2.3) 

where d2A ( t )  stands as per usual for d(Re A ( t))d(Im A ( t ) ) .  The integration over the 
complex field, A ( t ) ,  has the effect of replacing A ( t )  by x(  t ) ,  the coefficient of A * (  t ) .  
The operation is making use of a 6 functional. For details see the appendix. 

The path integral in ( 2 . 3 )  over x ( t )  can now be performed, and it is the case of a 
particle in a time-prescribed field of force F (  t )  = -ihA*( t ) ) .  Utilising Feynman and 
Hibbs (1965) we arrive at 

K ( x T 1  x‘0)  = (p) T i h  T ”’ exp( &(x - x ‘ ) 2  

xJexp[i JOT d t A * ( t ) ( x ’ + q t )  -JOT dt  l ~ ( t ) l ’  

+i/oTdt h i,’ds ( h ’ C ( t , s ) A * ( t ) A * ( s ) -  2 W(A(t)-A(s)))] 

where C ( t ,  s )  is a symmetric function given by 

Let us now introduce the functional integral identity 

( 2 . 4 ~ )  

x (“)d2A(r). 
O = r < T  

( 2 . 5 )  

The functionals *[A *( t ) ]  and @[A ( t ) ]  in the integrand of ( 2 . 5 )  depend respectively on 
A * ( t )  and A ( ? )  to the exclusion of their conjugates. Furthermore, the functionals 
exp(@[A(t)]) and exp(*[A( t ) ] )  are either integral functionals of A ( t ) ,  or if composed 
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of a series of functionals they are termwise integral in which case the functional 
integrations precede the series summation. A discussion concerning this sort of pro- 
cedure is given in the appendix for the case of functions integrated against a 6 function. 
The derivation of (2.5) is given in the appendix. 

Upon application of (2.5) to (2.4) we have: 

K ( X T ~ X ’ O ) =  K , ( X T ~ X ’ O )  

+ - ( t - s ) )  x - x ’  - l O T d r  iA(t )12]  n (“) d2A(t) 
T OGf<T %‘ 

where in (2.6) we have made use of the notation K,(xT)x’O) for the free particle 
propagator preceding the integral symbol in (2.4). Equation (2.6) is a functional 
integral over a complex field giving the propagator associated with the action (2.1). 
Clearly (2.6) shows that the propagator, regarding its spatial dependence, is a function 
of (x-x’ ) ,  a property relating to the translation invariance of the action (2.1). 

Let us now express the propagator K ( x T l x ’ 0 )  as a functional integral over a real 
field q(  t) .  This is easily attained using (2.6) as follows 

K ( x T  I x’0) = KO( xT I x’0) 
T 

xJexp(a loT dt loT ds C’(t, s ) q ( t ) q ( s ) + /  d t A * ( t ) q ( t )  

T 

x[de t2~ ihC’ ( t , s ) ] - ’ ’~  n dq( t )  n (“) dzA(t) 
O<r<T O S l C T  %‘ 

where C ’ (  t ,  s) in (2.7) is the inverse of C( 1, s) i.e. 

loT d a  C( t ,  a)C‘(a,  s )  = S( t - s) .  

(2.7) 

(2.7a) 

Equation (2.7) is seen to be valid since integration over q ( t )  will generate in the 
exponent the expression (ih/2) j,’ d t  j,‘ d s  C(t, s ) h * ( t ) h * ( s ) .  Considering that 
J2C( f, s ) / d a 2  = 6( t - a ) / m  there follows that the inverse matrix can be written explicitly 
as 

(2 .7b)  

The integration over q ( t )  does not include q ( 0 )  among the integration variables on 
account of C(0,  s) = C( t, 0) = 0. 

Upon integrating over the complex field A ( t )  in (2.7) q( t )  will replace A ( t )  in W 
and our propagator takes the form of a functional integral over a real field as 

K ( x T l x ’ 0 )  = K, (xT/x ’O)  

C‘( t ,  s) = m(a2/atz)6( t  - s). 
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x[det 2.rrifiC(t, s ) ] - ” ~  dq(t) .  (2.8) 
O < t < T  

Equation (2.8) could also have been obtained by use of the real form of the S functional, 
namely 

in conjunction with the original path integral. For use of the real 6 functional (2.9) 
elsewhere see Hosokawa (1967). 

Tarski (1968) gave certain functional integral transformations over real fields for 
the Wiener integral, mainly in the unconditional case. The complex field transforma- 
tions and in particular the functional integral identity ( 2 . 5 )  we believe to be new. 

A more general expression for W has the form W(x( t ) ,  x(s))  with explicit depen- 
dence on t and s. In this case the expression for W in (2.7) will be W(A(t)+x’+ 
(x - x’)t/ A (s)  + x’+ (x - x’)s/ T )  and correspondingly the W for (2.8) will be 
obtained from the above replacing A ( ? ) ,  A(s) by q ( t ) ,  q ( s ) .  

Taking W = G( t ,  s)x(  t ) x ( s ) ,  which belongs to the above case, one can proceed with 
the aid of (2.8) to re-establish the Adamowski et al (1982) result. 

As a further application consider the memory action 

= IoT d t y x 2 ( t )  - lor dt  JOT ds a( t )b(s)x( t )x(s) .  (2.10) 

Use of the complex auxiliary field as in (2.3) leads to the functional integral below 
for the propagator associated with the action (2.10) 

K,(xTlx’O) = K,(xT/x’O) 

x r e x p [ i  ~oTdrXo(f )A*(f )+{Tdr  0 J T d s  0 

C(t, s)A*(f)A*(s)-~a(t)b(s)A(t)A(s)) 1 

f i  

- I o T d t  fl (c) d2A(t). 
O s t c T  57 

= ( (aCa) ,  (aCb) ,  ( b C b ) )  

to be used in the process of evaluation of (2.11). 

(2.11) 

(2.12) 
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A further complex auxiliary variable, z, enables us to replace the bilinear functional 
in (2.11) by a linear functional in A ( t )  as follows 

exp( -: 5,’ dt  loT ds a(t)b(s)A( t ) A ( s ) )  

= Jexp[i J o r d t ( ~ u ( r ) + ~ b ( r )  Z* (2.13) 

With this substitution in (2.11) the integration over A ( t )  can now be performed, 
resulting in transmitting -(za( t )+ z*b( t ) ) / Jh  in place of A * ( t ) ,  and we obtain 

K,(xTlx’O) = Ko(xTlx’O) 

X I  exp( - ~ [ ( a X 0 ) z + ( ~ X o ) z * I  1 

1 
- - [ ( o C n ) z 2 +  (bCb)z*2]-i[(aCb) - l]\z/’)G (2.14) 

2 in 

where in (2.14) we have made use of the notation (2.12) and have furthermore used 
(6Ca) = (aCb). 

Linearisation of the term involving z2 in (2.14) via the transformation 

enables us to integrate over z, and subsequent integration over 5 leads to the desired 
propagator in an explicit form, as 

Kl (xT 1 x’0) = Ko(xT I x’O)(i/ D’”)exp --{( bCb)( axo)’+ 2[ 1 - (aCb)] ( 8 i D  

x(aXo)(bXd+ (aCa)(bXO)’l) (2.16) 

where 

D = (aCa)(  bCb) - [(aCb) - 112. ( 2 . 1 6 ~ )  

Result (2.15) could have also been obtained by use of the real form (2.9) of the 6 

As a further example let us consider the quartic action 
functional. 

d t  ( X 2 (  t )  - w’x’( t ) )  -- m 2 w 2  JOT dr JOT dsx2(t)x2(s) .  
4 

Making use of the identity 

i m 2 w 2  
h 4  

exp( -- - loT dt  lo’ ds x’( t ) x 2 ( s ) )  

= J exp(-$ywg 

(2.17) 

(2.18) 

in the path integral giving the propagator K 2  associated with the action (2.17) we arrive 
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at the equation 

1951 

exp($ Ior dt  [x2(t)-(w2+ wg)x2(t)] 
x(0) = x’ ,x i  T) = x  

The path integral on the far RHS of (2.19) can be evaluated from the formula for 
the propagator of an oscillator (see Feynman and Hibbs 1965), and thus the required 
propagator takes the form 

K 2 ( x T l x ’ O )  = J (477ifi)1/2 dg e x p ( - d ) (  4ifi 277ifi sin CL,T )”’ 

where 

CLg = ( w 2 +  wg)? 

(2.20) 

(2.20a) 

On replacing U’ by - w 2  in the action (2.17) there emerges a good deal of similarity 
with the action 

lor dt  (X2(t )+w2x2(t ) -~mw2x4(t ) )  
2 

used in a model for phase transitions. Because of this the above evaluation may have 
some usefulness in phase transition studies. 

3. Dynamical fields 

As pointed out in the introduction the effect of eliminating the degrees of freedom of 
a system ‘Q’, under certain conditions, coupled to a system ‘ X ’  manifests itself in a 
new Lagrangian of ‘ X ’ ,  viewed as a separate system, in the form of a memory potential 
function. A particular case of this nature appears in Osaka (1959), but there he did 
not proceed to extract the full expression for the related propagator. In this section 
we shall exploit the above situation for the purpose of treating propagators relating 
to certain quadratic actions which have recently appeared in the literature (Adamowski 
et a1 1982, Khandekar et a1 1983, Castrigiano and Kokiantonis 1983, 1984) through a 
unified formula involving evaluations with single-time Lagrangians. We shall further- 
more show how to generate certain new results. 

In order to demonstrate the procedure we consider a combined system ‘X-Q’ with 
Lagrangian 

L = Lo+ L,+ UI (3.1) 

where Lo is a single-time general quadratic Lagrangian involving only the coordinates 
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x of ‘ X ’ ,  and 

U ,  is an interaction potential energy between the oscillator ‘0’ and the system ‘ X ’ .  It 
should be noted that the range of values of the coupling constant k is restricted if the 
system is required to remain in a finite region. 

The propagator associated with the Lagrangian L can be written in the form of a 
Feynman path integral over the x and q paths 

K(xqTlx’q‘0) = s x(0) =r’,x( T ) = x  : q ( O ) = q ’ , q (  T) = q 

where So, in 
fiinctional of 

. T  

x(O)=r ’ .x (  T ) = r  exp(k lo Ldx( t ) l  dt+iSQ,jqT!q’O;[r(r)l))B[xl h 

(3.3) 

(3.3) is the classical action relating to the Lagrangian LQ+ U ] ,  and is a 
x ( t ) .  It is given by 

xs 

mk +- d t [q ’ s inw(T- t )+qs inwt ]  a x ( ? )  

- mk2 JOT dt  lo‘ ds sin w (  T -  t )  sin wsx( t )  . x(s). 

sin w T  lo 
w sin wT (3.3a) 

The path integral of the RHS of (3.3) relates to a two-time quadratic Lagrangian. 
It is also parametrised by the end conditions obeyed by the q paths. If we choose to 
eliminate the q end conditions in various ways, e.g. integrating (3.3) against a weight 
for q, q’ ,  we end up generating different memory actions. 

Let a particular weight be M ( q , q ’ ) .  Integrating (3.3) against M we obtain an 
identity involving a certain type of a memory path integral. 

x I exp( S(xqT 1 x ’ q ’ o ) )  M ( q ,  9’) dq dq’ (3.4) 

where S(xqTIx’q’0)  is the classical action relating to the Lagrangian Lo+ LQ+ U ,  from 
the spacetime point (x’, q’,  0) to the spacetime point (x, q, T). 
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For the derivation of (3 .4)  we have evaluated the propagator K in (3.3) noting that 
it relates to a single-time quadratic Lagrangian, (3 .1) ,  and therefore can be obtained 
by use of the classical action, S, associated with the Lagrangian (3.1).  The evaluation 
proceeds (as in Jones and Papadopoulos (1971) for a particle in an homogeneous 
magnetic field) using a result originally due to Van Vleck (1928).  It should be noted 
here that this procedure dbes not apply whenever memory is present in the Lagrangian. 

Formula (3.4) constitutes the main result of this section. It provides fully the time 
dependent pre-exponential factor for the propagator associated with the memory 
Lagrangian generated by the integration over q, q’ on the LHS of (3.4).  The approach 
covers a wide range of a certain type of memory Lagrangian and can go beyond 
quadratic Lagrangians by appropriate choice of the weight M. Nevertheless, its 
applicability remains rather limited. 

By appropriate choice of Lo, k and M ( q ,  q’ )  the evaluations given in the references 
at the start of this section can be obtained. For instance the case of Khandekar et al 
(1983) requires taking k = Rw and M = S ( q - q ’ ) .  However, rather than reproduce 
known results it would be more profitable to invest space on a certain new evaluation. 

Let us set in (3.4) M = S ( q ) S ( q ’ )  and thus obtain in the exponential argument 
on the LHS of (3.4) the Lagrangian 

L’=L 0 - mk2 l0‘ds sin w (  T -  t )  sin w s x ( t )  - x(s). 
w sin wT (3.5) 

Let us also take 

~ ~ = $ n ( x ~ - G * x ~ ) .  (3 .5a)  

For obtaining the corresponding S related to the Lagrangian L =  Lo+ L,+ U, we 
require the roots of the secular equation associated with the classical equatibn of 
motion deriving from L, which is: 

p4- (a2+ w 2 ) p 2 +  (R2u2-  k 2 )  =O. (3 .5b)  

In order to guarantee finiteness in the system’s motion (also periodicity) it is necessary 
to restrict k in the range k s G w .  

The roots of (3 .7b)  are given by p = f v l ,  p = f v2, where 

u , = { T + [ ( l )  R2+ w 2  
f p - w 2  2 + k ’ ] l l l j l i 2 ,  

The action along the classical path from (x‘, q’ ,  0) to (x, q, T )  is given by 

S(xqTlx’q‘0)  = (x2+ d2)[( v: - w 2 )  V I  cot T- (v: - w2)v2 cot 257-1 

(3 .5c)  

sin v2T sin v l  T 
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- 2 ( q  * x'+ q' x ) k  ( 3 . 5 d )  

Inserting now ( 3 . 5 d )  into (3 .6)  we obtain the following explicit path integral 
evaluation: 

mf12(w2f12 - k 2 )  sin U T  
.nihw( v: - vi)* sin vl T sin v,T s exp( $ loT dr L ' [ x (  r ) ]  

x(o)  = x'.x( r )  = 

im 
x exp{ [ (x2 + x")[( U :  - w ' )  U ,  cot v l  T - ( v i  - w 2 )  v2 cot v2T] 

2h( Vf - U : )  

VI 
( U :  - w 2 ) y  - 

sin U ,  T sin v2T 
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Appendix 

The real S function operation involves a particular real variable function S(x, R )  whose 
integration against a function f (x )  transmits to the argument o f f  the value R. As is 
well known the operation reads: 

5 f (x)b(x,  R )  d x  =f(R). 

A situation of this nature with the role of the variable x taken up by a complex 
variable z = x + iy can exist; the integration now being performed over the real and 
imaginary parts of z. 

A representation of the 6 function in the above complex case is given by 

A( z, R )  d2z = exp( Rz* - 121') d2z/ 7~ ( A l l  

and the function f has to be expressed explicitly as a function of z only. 
To enable ourselves to proceed along these lines we consider the integral. 

exp(&) exp(Rz* - 1 ~ 1 ' )  d2z/ n- = exp( 5R)  (A21 

which is seen to hold utilising the Cartesian form of the variable z after performing 
the resulting Gaussian integrations. 5 and R can in general be complex. For other 
applications of such integratims the reader is refered to Miihlschlegel (1978). Notice 
that ( A l )  in (A2) acts as a 6 function. The same applies for a linear combination of 
Fourier exponentials, exp( k , z ) .  

I 
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Next, if f ( z )  is an integral function the identity 

Io= f ( z )  exp(Rz*-lz(') d 'z/?r=f(R) I 
holds, for f can be represented through a power series as 

1955 

(A31 

and therefore Io can be generated as 

The 6 function character of (Al )  on integration with a rapidly growing function 
as I zI + CO overrides convergence difficulties through cancellations produced by the 
combined integrations over Re z and Im z. Thus, e.g. we have 

d2z 
exp(z4+ Rz* -lzI2)-= ?r exp(R4) 

a convergent result, in spite of the occurrence of a factor exp(x4) in the integrand. 

an integral function and therefore given as 
We can further consider the integration of g(z*)f(z) against (A l )  with g(z) also 

Since g(z*) exp(Rz*) can be generated as 

g(z*) exp(Rz*) = g(a/aR) exp(Rz*) 

we have with the aid of (A3) the result 

g( z*)f(z) exp(Rz* - Izl') d2z/ ?r = g(a/aR)f( R ) .  ( A4) 

(A3) is also valid when z and z* exchange positions. Under this exchange a particular 
case of (A4) with g(z) = z appeared earlier (Papadopoulos 1980). 

In the above cases the 6 function character of ( A l )  is rigorously exhibited. 
Nevertheless, these instances do not exhaust all 6 function operations which one may 
encounter in applications. However, as with the real 6 function one may be faced 
with convergence flaws. In the real case the difficulties reside in the 6 function 
expansions. While expression (Al )  is free of such subtleties it would seem inescapable 
that they should disappear completely from the complex treatment. We shall see that, 
once outside the regime of integral functions, convergence difficulties make their way 
through the expansion used to represent the transcription of the function f (x )  to the 
complex regime. In both cases, real and complex, these procedures, involving a faulty 
step, provide through the integrations a reliable final product. The likelihood of 
developing a theory for the complex case in compliance with present day mathematical 
standards of rigour exists. However, the exposition here cannot lay claim on a level of 
presentation beyond the sort accepted in most physical treatments. 

In the spirit of the above paragraph we proceed with treating the case when 
f(x)  = 1xJ-l. In order to employ (A3), even formally, we require an explicit function 
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of z and only of z leading to 1xJ-I for z = x. Evidently JzI-’ must be excluded since it 
is also a function of z*. However, the transform 

277”’ Iom exp( - t2x2)  d t  = IxI-’ 

provides the required combination, which is an integral of a function of x that can 
be extended to the z plane and be an explicit function of z only. Each of the functions 
exp(-.f2z2) is an integral function of z, and for which, therefore, (A3) applies perfectly. 
On the other hand the integral over 6 from 0 to CO does not converge for all z. 
Nevertheless, the following is true: 

d2z 
2 7 ~ ’ ”  los d e  1 exp(-t2z2) exp(Rz*-lz12)-=/Rl-’ ll 

showing a procedure of applying the 6 function operation in this case. 
The important case of the Coulomb potential can be handled via the transform 

(x: + x i+  x:)-”* = - 1 $exp[i(k,x, + k2x2+ k3x3)l 
2 7T2 

where k 2 =  k :+k:+  k:, but here we require a three-variable zl,  z2, z3 complex 6 
function. 

Having dealt to some extent with a complex form of the 6 function operation we 
can now with relatively little effort transcribe the operation to the functional regime. 
A 6 functional is essentially a ‘product of 6 functions’ over all the variables involved 
in the argument of the functional against which the 6 functional operation is to be 
applied. Since in general the range of indices labelling the various variables is a 
continuous interval, say O S  t < T, we can associate a ‘dt’ per variable and the 6 
functional will read 

(AS) when integrated with a functional %z( t)]  which is an explicit functional of z( t )  
only will transmit in place of z( t )  the value R ( t ) .  Thus, we have 

Let us now proceed to show ( 2 . 5 ) .  Under the conditions stated about 9 and @ in 
the text we can write with the aid of (A6). 

exp(9[A*(t)]) =Jexp(9[z*(r)]) exp( [JdtA*(r)z(t)-[or d t  iz(t)12) 

Notice that in (A7) we have exchanged z( t )  with z*(t) as this does not affect the role 
of the 6 functional operation, consisting in replacing z * ( t )  in 9 by the coefficient of 
z( t ) ,  A * (  t ) ,  in the linear term of the exponential on the LHS of (A7) 
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Denoting by I the LHS of (2.5) and utilising (A7) we have 

Now performing the integration over all A (  t )  we have 

Considering that z (  t )  is a dummy variable it can be replaced by A ( t )  and so the identity 
(2.5) is now established. 

We can now go a step further. On taking in (A9) the McLaurin expansion of 
q [ z * ( t ) ]  by virtue of (2.5) the coefficient of the linear term in z * ( t )  will be added to 
the argument of @ and we have 

S e x p ( u r [ z * ( t ) l + Q , [ ~ ( t ) I t  dtR(t)z*(?)-{oTdt iz(t)I’)  O S t < T  n (t) d2z(t)  

+ (%) 6 z * ( t )  r ’ = O  ] - loT dt  I x (  t )12 }  O s z < T  n ($) d2z( t ) .  
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